
The Luttinger liquid concept for interacting electrons in one dimension

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys.: Condens. Matter 14 12783

(http://iopscience.iop.org/0953-8984/14/48/317)

Download details:

IP Address: 171.66.16.97

The article was downloaded on 18/05/2010 at 19:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/14/48
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 12783–12791 PII: S0953-8984(02)54079-0

The Luttinger liquid concept for interacting electrons
in one dimension

K Schönhammer

Institut für Theoretische Physik, Universität Göttingen, Bunsenstr. 9, D-37073 Göttingen,
Germany

Received 30 September 2002
Published 22 November 2002
Online at stacks.iop.org/JPhysCM/14/12783

Abstract
The theoretical description of interacting fermions in one spatial dimension is
simplified by the fact that the low-energy spectrum of noninteracting fermions
is identical to the one for a harmonic chain. This allows us to describe
interacting fermions as a system of coupled oscillators. The exact solution
of the Tomonaga–Luttinger model is discussed and results for the momentum
distribution and spectral functions are presented. The general Luttinger liquid
phenomenology is briefly discussed and various attempts at the experimental
verification of the theoretical predictions are examined. Extended defects in
semiconductors might also be candidate systems.

1. Introduction

The low-temperature thermodynamic properties of simple metals can be qualitatively
understood in terms of the simple Sommerfeld model [1], which treats the conduction electrons
as noninteracting fermions in a box. Typical results are a specific heat linear in temperature
and a constant spin susceptibility in qualitative agreement with experiments. Landau’s
Fermi liquid theory [2] rests on the assumption of quasi-particles which are in a one-to-
one correspondence to noninteracting fermions. This leads to a linear specific heat and a
constant spin susceptibility but involves renormalized quantities like the effective mass and
quasi-particle interaction parameters [2, 3], which are difficult to calculate microscopically.
The consistency of the approach was shown using perturbation theory to infinite order and
more recently by renormalization group techniques [4].

The problem of interacting fermions simplifies in one dimension. In a pioneering paper [5]
Tomonaga treated the case of a two-body interaction which is long ranged in real space. He
showed that the low-energy excitations of the noninteracting as well as the interacting system
can be described in terms of noninteracting bosons [6]. The important idea used to solve the
case of interacting fermions was the observation that a long-range interaction in real space
is short ranged in momentum space and therefore only particles and holes in the vicinity of
the Fermi points are involved in the interacting ground state and states with a low excitation
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energy. To obtain his results, Tomonaga linearized the energy dispersion around the two
Fermi points ±kF . Luttinger [7] later used a model with strictly linear energy dispersions and
presented the exact result for the mean occupation numbers. The complete solution for the
Luttinger model was presented by Mattis and Lieb [8]. A very elegant method for calculating
correlation functions for the model is the bosonization of the fermion field operator [9–12]. The
exponents of the anomalous power-law decay of various correlation functions are determined
by the anomalous dimension, which can be calculated explicitly for the Tomonaga–Luttinger
(TL) model [7–9]. Haldane [10] made the important observation that the low-energy physics
of the exactly solvable TL model provides the generic scenario for one-dimensional fermions
with repulsive interactions. As in the Landau Fermi liquid picture [2] a few parameters
completely determine the low-energy physics. Generally they are as difficult to calculate
as the Landau parameters. In contrast to the higher-dimensional case there are additional
exactly solvable models for which Haldane’s Luttinger liquid scenario can be tested and the
parameters determining the anomalous dimension can be calculated using the Bethe ansatz
technique [13].

An important manifestation of Luttinger liquids is called spin charge separation, i.e. for
low-energy excitations the charge and spin degrees are completely decoupled. This shows up,
for example, in the spectral function of the one-particle Green function [14, 15] which largely
determines the photoemission spectrum. Recent high-resolution photoemission experiments
on quasi one-dimensional conductors have been interpreted as showing Luttinger liquid
behaviour [16]. Another important aspect of LL behaviour concerns the peculiar modification
of the electronic properties of an LL when a single impurity with an arbitrarily weak
backscattering potential is present. For a spinless LL with a repulsive two-body interaction, a
perturbative renormalization group calculation [17] shows that the backscattering potential is
a relevant perturbation. At low energy scales, even for a weak impurity, physical observables
behave as if the system is split into two semi-infinite chains. This leads to a conductance which
vanishes with a power law in T at low temperatures [17].

In section 2 the TL model and the basic concepts of LL physics are presented without
going into too much technical detail and attempts at an experimental verification are discussed
in section 3.

2. The Tomonaga–Luttinger model

The first step in the understanding of interacting fermions in one dimension (d = 1) is to
realize that noninteracting fermions have the same type of low-energy excitations as a harmonic
chain [18]. The low-energy excitations determine, for example, the low-temperature specific
heat. Debye’s famous T 3 law for the lattice contribution of three-dimensional solids reads in
d = 1

cDebye
L = π

3
kB

(
kB T

h̄cs

)
, (1)

where cs is the sound velocity. At low temperatures the electronic contribution to the specific
heat in the ‘Fermi gas’ approximation of Pauli is also linear in T and involves the density of
states of the noninteracting electrons at the Fermi energy. This yields for spinless fermions in
d = 1

cPauli
L = π

3
kB

(
kB T

h̄vF

)
, (2)

where vF is the Fermi velocity. With the replacement cs ↔ vF the results are identical. This
suggests that apart from a scale factor the (low-energy) excitation energies and the degeneracies
in the two types of systems are identical.
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When a two-body interaction between the fermions is switched on, the ground state is no
longer the filled Fermi sea but it has admixtures of (multiple) particle–hole pair excitations.
In order to simplify the problem Tomonaga studied the high-density limit where the range
of the interaction is much larger than the interparticle distance, using periodic boundary
conditions [5]. Then the Fourier transform ṽ(k) of the two-body interaction is nonzero only for
values |k| � kc where the cut-off kc is much smaller than the Fermi momentum kc � kF . This
implies that for not too strong interactions the ground state and low-energy excited states have
negligible admixtures of holes deep in the Fermi sea and particles with momenta |k|−kF � kc.
In the two intermediate regions around the two Fermi points ±kF , with particle–hole pairs
present, the dispersion εk is linearized in order to apply Bloch’s ‘sound wave method’ [18]

k ≈ ±kF : εk = εF ± vF (k ∓ kF ). (3)

Tomonaga realized that the Fourier components of the operator of the density

ρ̂n =
∫ L/2

−L/2
ρ̂(x)e−ikn x dx =

∑
n′

c†
n′cn′+n, (4)

where c†
n(cn) creates (annihilates) a fermion in the state with momentum kn = 2π

L n, plays a
central role in the interaction term, as well as the kinetic energy. Apart from additional terms
involving the particle number operator the two-body interaction is given by

V̂ = 1

2L

∑
n

ṽ(kn)ρ̂n ρ̂−n . (5)

Tomonaga’s important step was to split ρ̂n for |kn| � kF into two parts, one containing
operators of ‘right movers’, i.e. involving fermions near the right Fermi point kF with velocity
vF , and ‘left movers’, involving fermions near −kF with velocity −vF

ρ̂n =
∑
n′�0

c†
n′ cn′+n +

∑
n′<0

c†
n′cn′+n ≡ ρ̂n,+ + ρ̂n,− (6)

where the details of the splitting for small |n′| are irrelevant. Their commutation relations in
the low-energy subspace with no holes deep in the Fermi sea are [5]

[ρ̂m,α, ρ̂n,β] = αmδαβδm,−n 1̂. (7)

If one defines the operators

bn ≡ 1√|n|

{
ρ̂n,+ for n > 0

ρ̂n,− for n < 0
(8)

and the corresponding adjoint operators b†
n this leads, using ρ

†
n,± = ρ−n,±, to the bosonic

commutation relations

[bn, bm] = 0, [bn, b†
m] = δmn 1̂. (9)

As V̂ is bilinear in the ρ̂n the same is true for the ρ̂n,±. As the additional important step
in solving the interacting model Tomonaga used Bloch’s insight, that the kinetic energy can
also be expressed in terms of the Bose operators [5]. Therefore, apart from an additional
term containing particle number operators, the Hamiltonian for the interacting fermions is a
quadratic form in the boson operators

H =
∑
n>0

h̄kn

{(
vF +

ṽ(kn)

2π h̄

)
(b†

nbn + b†
−nb−n) +

ṽ(kn)

2π h̄
(b†

nb†
−n + b−nbn)

}

+
h̄π

2L
[vNN 2 + vJJ 2] ≡ HB + HN ,J , (10)
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where N ≡ N+ + N− is the total particle number operator, J ≡ N+ − N− the ‘current
operator’, and the velocities are given by vN = vF + ṽ(0)/π h̄ and vJ = vF . Here vN

determines the energy change for adding particles without generating bosons while vJ enters
the energy change when the difference in the number of right and left movers is changed. As
the particle number operators N± commute with the boson operators bm(b†

m) the two terms
HB and HN ,J in the Hamiltonian commute and can be treated separately. Because of the
translational invariance, the two-body interaction only couples the modes described by b†

n and
b−n . With the Bogoliubov transformation α†

n = b†
n cosh θn − b−n sinh θn the Hamiltonian HB

can be brought into the form

HB =
∑
n 	=0

h̄ωnα
†
nαn + constant, (11)

where the ωn = vF |kn|
√

1 + ṽ(kn)/π h̄vF follow from 2×2 eigenvalue problems corresponding
to the condition [HB, α†

n] = ωnα
†
n . For small kn one obtains for smooth potentials ṽ(k) again

a linear dispersion ωn ≈ vc|kn|, with the ‘charge velocity’ vc = √
vN vJ , which is larger than

vF for ṽ(0) > 0. The parameter θn in the Bogoliubov transformation is determined by

tanh (2θn) = − ṽ(kn)

2π h̄vF + ṽ(kn)
. (12)

For fixed particle numbers N+ and N−, the excitation energies of the interacting Fermi system
are given by

∑
m h̄ωmnm with integer occupation numbers 0 � nm < ∞. For small enough

excitation energies the only difference between the excitation spectrum for fixed particle
numbers and that for the noninteracting case is the replacement vF ↔ vc.

The interacting ground state with its multiple particle–hole pairs above the Fermi sea is
given by [10]

|E0(N)〉 ∼ exp

(∑
n>0

tanh (θn)b
†
nb†

−n

)
|F(N)〉. (13)

In order to elucidate the non-Fermi liquid character of the TL model with ṽ(0) 	= 0 it is
best to study the dynamics of states c(†)

kn
|E0(N)〉 with an additional particle (hole). Only in the

noninteracting limit are these states eigenstates of the Hamiltonian and therefore have an infinite
lifetime. In the (three-dimensional) Fermi liquid theory the quasi-particle(hole) concept is very
successful, with the lifetime of these states going to infinity when the momentum approaches
the Fermi surface. If one defines the ‘quasi-hole weight’ Z F as

Z F ≡ |〈E (−kF )

0 (N − 1)|ckF |E0(N)〉|2, (14)

where |E (−kF )

0 (N − 1)〉 is the (N − 1)-particle groundstate with total momentum −kF , one
has Z F = 1 for noninteracting fermions. Assuming the validity of Fermi liquid theory one
expects Z F → constant in the limit L → ∞. An exact calculation of Z F for the TL model is
possible by ‘bosonizing’ the field operators ck [9–12] as well. This yields

Z F = exp

(
−

∑
n>0

2 sinh2(θn)

n

)
. (15)

In the large L limit the sum can be converted to an integral and one obtains Z F ∼ (1/L)α,
where

α = 2 sinh2 [θ(0)] =
[

1 −
(

ṽ(0)

2π h̄vF + ṽ(0)

)2]−1/2

− 1, (16)

is called the anomalous dimension, as α determines the anomalously slow spatial decay of the
one-particle Green function. If one defines the ‘stiffness constant’ K ≡ e2θ(0) = (vJ /vN )1/2
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Figure 1. The full curve shows the average occupation 〈nk,+〉 for a TL model with α = 0.6. The
dashed curve shows the expectation from Fermi liquid theory, where the discontinuity at kF is given
by ZF . This can also be realized in a TL model with ṽ(0) = 0. The details of the interaction are
specified in the text.

the anomalous dimension can also be written as α = (K − 1)2/2K . In contrast to Fermi
liquid theory the quasi-hole weight Z F vanishes in a power-law fashion for L → ∞, if ṽ(0)

is different from zero.
The appearance of power laws in the TL model was first realized by Luttinger [7]. He

found that the average occupation 〈nk,+〉 ≡ 〈E0(N)|c†
k ck |E0(N)〉 in the interacting ground

state for k ≈ kF behaves as

〈nk,+〉 − 1

2
∼

∣∣∣∣k − kF

kc

∣∣∣∣
α

sign(kF − k). (17)

This is shown in figure 1 in comparison with Fermi liquid theory. The full line was calculated
assuming sinh2[θ(k)] = 0.3e−2|k|/kc , while the dashed line corresponds to sinh2[θ(k)] =
0.6(|k|/kc)e−2|k|/kc .

Electrons are spin one-half particles and for their description it is necessary to include
the spin degree of freedom in the model. For a fixed quantization axis the two spin states
are denoted by σ =↑,↓. The fermionic creation (annihilation) operators carry an additional
spin label as well as the ρ̂n,±,σ and the boson operators bn,σ which in a straightforward way
generalize equation (8). It is useful to switch to new boson operators bn,a with a = c, s

bn,c ≡ 1√
2
(bn,↑ + bn,↓)

bn,s ≡ 1√
2
(bn↑ − bn,↓),

(18)

which obey [ba,n, ba′,n′] = 0 and [ba,n, b†
a′,n′] = δaa′δnn′ 1̂. The kinetic energy can be

expressed in terms of the ‘charge’ (c) and ‘spin’ (s) boson operators using b†
n,↑bn,↑ + b†

n↓bn↓ =
b†

n,cbn,c +b†
n,sbn,s . If one defines the interaction matrix elements ṽc(q) ≡ 2ṽ(q) and vs(q) = 0,

N±,c ≡ (N±,↑ + N±,↓)/
√

2 and N±,s as the corresponding difference, one can write the TL
Hamiltonian H̃ (1/2)

T L for spin one-half fermions as

H̃ (1/2)

T L = H̃T L ,c + H̃T L ,s , (19)
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where the H̃T L ,a are of the form equation (10) but the interaction matrix elements have the
additional label a. The two terms on the rhs of equation (19) commute, i.e. the ‘charge’ and
‘spin’ excitation are completely independent. This is usually called ‘spin–charge separation’.
The diagonalization of the two separate parts proceeds exactly as before and the low-energy
excitations are ‘massless bosons’ ωn,a ≈ va |kn| with charge velocity vc = (vJcvNc )

1/2 and
spin velocity vs = (vJs vNs )

1/2 = vF . The corresponding two stiffness constants are given by
Kc = (vJc/vNc )

1/2 and Ks = 1. If one allows the coupling constants in equation (10) in front
of the b†b and the b†b† terms to be different, the spin velocity vs differs from vF . If in addition
the interaction is allowed not to be spin rotational invariant, Ks differs from 1 [19].

The low-temperature thermodynamic properties of the TL model including spin can be
expressed in terms of the four quantities vc, Kc, vs and Ks . As an example we consider the
specific heat. Due to spin–charge separation it has two additive contributions of the same form
as in equations (1) and (2). If we denote, as usual, the proportionality factor in the linear T
term by γ one obtains

γ

γ0
= 1

2

(
vF

vc
+

vF

vs

)
, (20)

where γ0 is the value in the noninteracting limit.
A simple manifestation of spin–charge separation occurs in the time evolution of a

localized perturbation of, for example, the spin-up density. If the initial state of the system
involves a perturbation of right movers only, and the perturbation is sufficiently smooth, the
initial perturbation is split into four parts which move with velocities ±vc and ±vs without
changing the initial shape. If only the initial expectation values of the bn,↑ are different from
zero one obtains for δ〈ρ↑(x, 0)〉 ≡ F(x) using the simple time evolution αn,a(t) = αn,ae−iωn,a t

for a = c, s

δ〈ρ↑(x, t)〉 =
∑

a

[
1 + Ka

4
F(x − vat) +

1 − Ka

4
F(x + vat)

]
. (21)

For the spin rotational invariant case Ks = 1 there is no contribution which moves to the left
with the spin velocity. The following comment should be made: spin–charge separation is
often described as the fact that when an electron is injected into the system its spin and charge
move independently with different velocities. This is very misleading as it is a collective effect
of the total system which produces expectation values as in equation (21).

The easiest way to understand the important manifestation of spin–charge separation in the
momentum resolved one-particle spectral functions [14, 15] is to make use of the bosonization
of the electronic field operators. These spectral functions which are relevant for the description
of angular resolved photoemission are just the spectral resolutions of the hole states ck,σ |E0(N)〉
discussed earlier

ρ<
σ (k, ω) =

∑
j

|〈E j (N − 1)|ck,σ |E0(N)〉|2δ(ω + E j(N − 1) − E0(N − 1)). (22)

The k-resolved spectral functions show a drastic difference from the model without spin. The
delta peaks of the noninteracting model are broadened into one power-law threshold in the
model without spin and two power-law singularities (see figure 2) in the model including
spin [14, 15]. The ‘peaks’ disperse linearly with k − kF .

For the momentum integrated spectral functions, relevant for angular integrated
photoemission, one obtains ρα,σ (ω) ∼ |ω|α as in the spinless model. For the calculation
of other correlation functions we refer to recent reviews [19, 20].

Integrable lattice models like the 1D Hubbard model can be shown to be Luttinger liquids
(except at half filling where low-energy umklapp processes lead to the opening of a Mott–
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Figure 2. Spectral function ρ+,σ (kF + k̃, ω) as a function of normalized frequency for k̃ = −kc/10
for the TL model with a spin-independent interaction. The parameters are chosen such that
vc = 2vF and α = 1/8. In the noninteracting limit there is a delta peak at −0.1.

Hubbard charge gap) and the Luttinger liquid parameters vc, vs and Kc can be calculated
exactly [13].

3. On the experimental verification of LL behaviour

Strictly 1D systems are a theoretical idealization. Apart from this even the coupling to an
experimental probe presents a nontrivial disturbance of a Luttinger liquid. Unfortunately the
weak coupling of a 1D system to such a probe as well as the coupling between several LLs
is not completely understood theoretically [19]. The coupling between the chains in a very
anisotropic 3D compound generally, at low enough temperatures, leads to true long-range
order. The order develops in the phase for which the algebraic decay of the corresponding
correlation function of the single-chain LL is the slowest [19]. This can lead, for example, to
charge density wave (CDW) order, spin density wave (SDW) order or superconductivity.

There exist several types of experimental system where a predominantly 1D character
can be hoped to lead to an (approximate) verification of the physics of Luttinger liquids in an
appropriate temperature and energy window. In the following we present a short list of the
most promising systems and discuss some of the experimental techniques which have been
used.

The following systems look promising:

• Highly anisotropic ‘quasi-one-dimensional’ conductors. There has been extensive work
on organic conductors like the Bechgaard salts [16, 21], as well as inorganic materials [22].

• Artificial quantum wires. Two important types of realizations are quantum wires in
semiconductor heterostructures [23, 24] or quantum wires on surface substrates [25, 26].

• Carbon nanotubes. The long cylindrical fullerenes called quantum nanotubes are also
quantum wires but have been listed separately because of their special importance in
possible future applications like ‘molecular electronics’ [27, 28]. Using the peculiar
band structure of the π-electrons of a single graphite plane it was shown that single wall
‘armchair’ nanotubes should show LL behaviour with Kc ∼ 0.2–0.3 down to very low
temperatures [29, 30], despite the fact that two low energy channels are present.
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• Fractional quantum Hall fluids. Electrons at the edges of a two-dimensional fractional
quantum Hall system can be described as a chiral Luttinger liquid [31]. The power-law
tunnelling density of states observable in the tunnelling current–voltage characteristics
shows power laws of extraordinary quality [32]. As in these chiral LLs the right- and
left-movers are spatially separated the edge state transport is quite different from the case
of quantum wires.

• Extended defects in semiconductors might be another possible realization [33].

Promising experimental techniques for verifying LL behaviour are:

• High-resolution photoemission. One of the earliest claims of possible verification of
Luttinger liquid behaviour was from angular integrated photoemission of the Bechgaard
salt (TMTSF)2PF6, which showed a power-law supression at the chemical potential with
an exponent of order 1 over an energy range of almost 1 eV [34]. As there are doubts
that this suppression can be simply explained by the LL power-law behaviour a large
number of other quasi-one-dimensional conductors were examined [16, 22, 25, 26, 35].
All these studies indicate that an unambiguous identification of spin–charge separation in
a 1D metal by photoemission is still lacking.

• Transport. As discussed in the introduction even a single impurity has a drastic effect
on the conductance of a LL, which vanishes as a power law with temperature. Another
issue is the ‘conductance puzzle’ of a clean LL. There has been an extended discussion
about whether the quantized value e2/h for noninteracting electrons in a single channel
is modified by the interaction to Kce2/h [36, 37]. Apparently the answer depends
sensitively on the assumptions made about the contacts, a very delicate theoretical as
well as experimental problem [38]. Experimental results are available for cleaved edge
overgrowth quantum wires [23] as well as carbon nanotubes [39–41]. In the nanotubes the
authors observe approximate power laws of the conductance which seem to be consistent
with LL behaviour.

• Optical properties. The optical behaviour of different Bechgaard salts was analysed
recently using LL concepts [42].

Obviously neither the list of systems nor that of methods is close to being complete. They
were presented to show that intensive experimental activities are being pursued in the attempt
to verify the elegant LL concept put forward by theoreticians. Further work on both sides is
necessary to come to unambiguous conclusions.
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